Свинцовые стартерные аккумуляторы являются наиболее массовым и недорогим химическим источником тока, благодаря относительной дешевизне используемых материалов и высокой степени автоматизации производства. Наилучшие образцы первых аккумуляторов, конца 19в., имели удельную энергию по массе 7-8 Вт•ч/кг при продолжительном разряде (у нынешних образцов 40-47 Вт•ч/кг).
Сейчас выпускаются герметизированный автомобильные аккумуляторы с иммобилизованным (гелеобразным или абсорбированным) электролитом, эти аккумуляторы обеспечивают работоспособность в любом пространственном положении и применяются в системах резервного и аварийного энергоснабжения, бытовой технике и т.п.
Активными веществами свинцового аккумулятора, принимающими участие в токообразующих реакциях, являются:
• на положительном электроде - двуокись свинца PbO2 (темно-коричневого цвета);
• на отрицательном электроде - губчатый свинец Pb (серого цвета);
• электролит - водный раствор серной кислоты H2SO4
В ходе разряда аккумулятора активная масса отрицательного электрода превращается из губчатого свинца в сульфат свинца, со сменой серого цвета на светло-серый, отдавая два электрона в электрическую цепь.
Pb + HSO4- → PbSO4 + H+ + 2e-
Активная масса положительного электрода по ходу разряда превращается из двуокиси свинца PbO2, так же как и активная масса отрицательного электрода, в сульфат свинца PbSO4 с изменением цвета с темно-коричневого на светло-коричневый, поглощая два електрона.
PbO2 + HSO4- + 3H+ + 2e- → PbSO4 + 2H2O
В результате разряда аккумулятора активные материалы и положительного (PbO2), и отрицательного (Pb) электродов преобразуются в сульфат свинца PbSO4. При этом на формирование сульфата свинца расходуется серная кислота, что вызывает снижение концентрации электролита и как следствие снижение его плотности. Суммарная реакция при разряде аккумулятора:
PbO2 + Pb + 2H2SO4 → 2PbSO4 + 2H2O
При зарядке аккумулятора идут обратные в противоположную сторону, в ходе которых кроме всего прочего происходит образование серной кислоты, в результате чего при заряде растет плотность электролита. Суммарное уравнение процесса заряда:
2PbSO4 + 2H2O → PbO2 + Pb + 2H2SO4
Когда реакции преобразования веществ в активных массах положительного и отрицательного электродов завершены, плотность электролита перестает меняться, что служит признаком завершения заряда аккумулятора. При дальнейшем продолжении заряда протекает так называемый вторичный процесс - электролитическое разложение воды на кислород и водород. Выделяясь из электролита в виде пузырьков газа, они создают иллюзию кипения электролита, что тоже служит признаком завершения процесса заряда.
Каждый аккумулятор состоит из пространственно разделенных разноименных электродов, погруженных в раствор электролита и помещенных в прочный корпус, который устойчив к химическому воздействию электролита, механическим нагрузкам и температурным колебаниям.
Активная масса электродов обладает высокой пористость (47-60%) и у заряженных аккумуляторов на положительном электроде состоит в основном из двуокиси свинца PbO2 (85-90 %), а на отрицательном электроде - из губчатого свинца Pb (80-90 %).
Раньше для изготовления корпуса аккумуляторов использовали эбонит, который обладает относительно низкой механической прочностью. Поэтому стенки эбонитовых блоков имеют толщину 6-8 мм для аккумуляторных батарей до 90 А•ч и 9-12 мм при емкости более 100 А•ч. При переходе с эбонита на сополимер полипропилена с этиленом, удается уменьшить толщину стенок в два раза и понизить массу корпусных деталей без ухудшения их надежности.
Необслуживаемые автомобильные аккумуляторы
Традиционные автомобильные аккумуляторы имеют недостатки связанные с тем, что сурьма, содержащаяся в сплаве положительных токоотводов, постепенно, по мере их коррозии, переходит через раствор на поверхность отрицательного электрода. Накопление большого количества сурьмы на поверхности отрицательной активной массы понижает напряжение начала газовыделения. Вследствие этого в конце зарядного процесса происходит все более бурное газовыделение, напоминающее кипение электролита. Это ведет к потери воды из-за ее электролитического разложения и испарения вместе с образующимися газами.
За последние десятилетия произошло стремительное развитие технологии и совершенствование оборудования для аккумуляторного производства. В итоге на рынке появилось несколько видов, так называемых, необслуживаемых автомобильных аккумуляторов. Особенностью таких аккумуляторов является использование для производства токоотводов, сплавов без сурьмы или с ее пониженным содержанием. Необслуживаемые аккумуляторы начали изготавливать в США в конце семидесятых годов прошлого столетия. Для токоотводов и положительного, и отрицательного электродов применялся свинцово-кальциевый сплав с содержанием кальция 0,07-0,1% и олова 0,1-0,12% (остальное - свинец). Это позволило достигнуть значительного снижения газовыделения, которое обеспечивало эксплуатацию аккумуляторов без доливки воды в течение 2 лет и более. При этом саморазряд замедлился более чем в шесть раз. Но после двух-трех глубоких разрядов такие аккумуляторы теряют 40-50% емкости и их стартерные характеристики также значительно снижаются. Поэтому такие аккумуляторы не нашли широкого распространения в Европе и России. Почти одновременно со свинцово-кальциевой технологией производства аккумуляторных батарей необслуживаемого исполнения, в США появилась технология гибридных аккумуляторов - система "кальций плюс" с содержанием до 1,5-1,8% сурьмы и 1,4-1,6% кадмия в положительном токоотводе и отрицательным свинцово-кальциевым токоотводом. В начале восьмидесятых годов производство необслуживаемых аккумуляторов стало стремительно развиваться и в странах Европы. Здесь пошли по пути использования сплавов с пониженным до 2,5-3,0% содержанием сурьмы. У таких аккумуляторов расход воды и саморазряд были в 2-3 раза выше, чем у батарей с кальциевыми токоотводами, хотя и значительно ниже, чем у батарей традиционного исполнения. Они могли работать без доливки воды не менее 1 года.
Далее в Европе появляются гибридные аккумуляторные батареи, у которых положительные токоотводы изготовлены из малосурьмяного сплава (не более 2%) с добавлением мышьяка, олова, меди, селена и т.п. в различных сочетаниях и соотношениях; а отрицательные - из свинцово-кальциевого сплава. Их характеристики по расходу воды и саморазряду, как и у американских гибридных аккумуляторов, не такие хорошие, как у свинцово-кальциевых, но все же существенно лучше, чем у батарей по технологии малосурьмяных сплавов.
В конце 90-х годов в США и Западной Европе начинается производство аккумуляторов с токоотводами из свинцово-кальциевого сплава с многокомпонентными добавками, в том числе и серебра, которые при глубоких разрядах теряют емкость гораздо медленнее, чем первое поколение аккумуляторных батарей по свинцово-кальциевой технологии. Расход воды у них так мал, что конструкторы убирают с крышек отверстия для доливки воды и делают аккумуляторные батареи полностью необслуживаемыми и исключающими доступ к электролиту при использовании аккумулятора.
Такое изменение конструкции стало возможным благодаря общим усилиям производителей аккумуляторов и автомобильного электрооборудования. Ведь для максимального использования ресурса полностью необслуживаемой аккумуляторной батареи (без отверстий для доливки воды) необходимо обеспечить стабильное зарядное напряжение, обеспечивающие минимальное разложение воды при заряде аккумуляторов. В то же время, степень заряженности аккумуляторной батареи должна быть достаточной для безотказной работы всего электрооборудования. Это стало возможно благодаря созданию системы регулирования зарядного напряжения, обеспечивающей его стабильность с точностью ± 0,1 В.
Но владельцы автомобилей, решившие использовать необслуживаемые аккумуляторы без отверстий для доливки воды, должны более внимательно относиться к обеспечению исправной работы электрооборудования. Прежде всего это касается натяжения ремня привода генератора, исправности самого генератора, регулятора напряжения, отсутствия утечек тока в системе электрооборудования или сигнализации и ряда других факторов.
Автомобильные аккумуляторы, у которых отсутствуют отверстия для доливки воды и имеется только атмосферная связь внутренней полости с окружающей средой через небольшие вентиляционные отверстия на торцах крышки, как правило оснащены индикатором состояния заряженности (рисунок 1): шарик-поплавок зеленого цвета расположен над пластинами, который всплывает, когда электролит при заряде достигает определенной плотности. Эта величина соответствует минимальной степени заряженности (62-64% от номинального значения), при которой индикатор начинает давать информацию о работоспособности аккумуляторной батареи в пусковом режиме. Последующее увеличение плотности электролита (до 100 % заряда) не меняет показания индикатора, что является недостатком данного приспособления. В случаях понижения уровня электролита до оголения пластин, информация индикатора о состоянии заряженности батареи прекращается. При работающем индикаторе его информация относится только к одной из шести банок (ячеек) аккумуляторной батареи. В тех случаях, когда появляется дефект в другой банке, где нет индикатора, информация индикатора становится бесполезной, не отражающей общее состояние (работоспособность) аккумуляторной батареи. Использование индикатора дает полезную информацию о состоянии батареи в тех случаях, когда она не содержит дефекта производственного характера.
Рис.1 Индикатор заряженности аккумулятора
Герметизированные автомобильные аккумуляторы с иммобилизованным электролитом
Создание полностью необслуживаемого автомобильного аккумулятора свинцово-кислотной системы становится возможным, если его конструкцию поменять таким образом, чтобы связать выделяющийся на положительном электроде кислород на поверхности отрицательного электрода (реализация кислородного цикла). Для этого емкость отрицательных электродов в аккумуляторе должна быть на несколько процентов больше емкости положительных. Тогда в ходе заряда положительные электроды полностью зарядятся раньше, чем отрицательные. Благодаря этому активное выделение кислорода на положительном электроде начнется до начала активного выделения водорода на отрицательном. Образующийся кислород вступает в химическое взаимодействие с активной массой отрицательного электрода. Для увеличения скорости поступления кислорода от положительного электрода к отрицательному, необходимо ограничение объема свободного электролита. Поэтому для производства герметизированных батарей разработаны способы связывания жидкого электролита:
• создание загущенного (гелеобразного) электролита;
• адсорбция жидкого электролита в сепараторах с высокой объемной пористостью.
Искусственное ограничение емкости положительных электродов и объема электролита ведут к тому, что емкость герметизированных свинцовых аккумуляторов с иммобилизованным электролитом на 15-20% меньше, чем батарей со свободным электролитом таково же объема и массы.
В качестве загустителя для создания гелеобразного электролита применяют силикагель, аллюмогель и другие вещества. При смачивании серной кислотой эти вещества образуют тиксотропный гель. В качестве сепараторов в подавляющем большинстве герметизированных аккумуляторов используют стекломаты из ультратонких волокон. Объемная пористость современных стеклосепараторов достигает 80-85%. Благодаря этому их применяют не только для батарей с гелеобразным электролитом, но и для аккумуляторов с адсорбированным жидким электролитом. В последнем случае технология производства немного дешевле, но емкостные показатели хуже, чем у автомобильных аккумуляторов с гелеобразным электролитом. Это обусловлено еще большим снижением количества электролита в аккумуляторе.
Свинцовые аккумуляторные батареи с иммобилизованным электролитом являются герметизированными, но не являются герметичными как, например, никель-кадмиевые герметичные аккумуляторы. Во всех свинцовых герметизированных аккумуляторах есть предохранительный клапан. Он служит для того, чтобы давление внутри аккумулятора не превышало величины, которая является допустимой по условиям работоспособности и прочности корпусных деталей аккумулятора. Дело в том, что, несмотря на используемые ограничения емкости положительных электродов, выделение водорода на отрицательном электроде в процессе заряда, особенно на завершающей стадии, полностью подавить невозможно. Причем скорость его выделения в конце заряда несколько выше, чем скорость выделения кислорода. Избыточная часть водорода вызывает увеличение давления внутри аккумулятора, для ограничения которого и служит клапан.
Нормальная эксплуатация герметизированных свинцовых автомобильных аккумуляторов возможна при соблюдении гораздо более жесткого диапазона регулирования зарядного напряжения, чем при эксплуатации необслуживаемых аккумуляторов с жидким электролитом (даже не имеющих отверстий для доливки воды). Максимальная величина зарядного напряжения для автомобильных аккумуляторных батарей с загущенным (гелеобразным) и адсорбированным электролитом зависит от рекомендаций производителя (ориентировочно для гелеобразных 14,35В, а для адсорбированных 14,4В). В случае превышения величины рекомендованной производителем на 0,05В скорость газовыделения становится так велика, что ведет к нарушению контакта активной массы электродов с электролитом, а также к высыханию аккумулятора, в результате чего батарея утрачивает работоспособность.
Весьма жесткие ограничения величины зарядного напряжения, наряду с гораздо более высокой стоимостью герметизированных автомобильных аккумуляторных батарей в сравнении с необслуживаемыми, создают определенные трудности для их широкого использования на автомобилях.
Емкость аккумулятора
Емкость аккумулятора - это количество электричества, полученное от аккумулятора при его разряде до определенного конечного напряжения. В практических расчетах емкость аккумулятора принято выражать в ампер-часах (А•ч). Разрядную емкость Cp можно рассчитать, умножив силу разрядного тока Ip на продолжительность разряда Tp (при условии, что Ip остается постоянной)
Cp=Ip•Tp
Разрядная емкость, на которую рассчитан аккумулятор и которая указывается изготовителем, называется номинальной емкостью. Кроме нее, важным показателем является также емкость, сообщаемая аккумуляторной батарее при заряде, которая вычисляется по формуле (при Iз = const):
Cз = Iз • Tз